
1	
	

	

Proudly	 Presents:	
	

	 	 	 	 	 	
	
	

YCP30	 -‐	 Intelligent	 Ground	 Vehicle	 Competition	 2011	

Team	 Members	

Richard	 Beasley,	 Ethan	 Benedict,	 Timothy	 Cardenuto	

Matthew	 Heisey,	 Kevin	 Gaquin,	 Andrew	 Malachowski,	 Patrick	 McVeigh	

John	 Powell,	 Matthew	 Small,	 Fernando	 Torres	

2	
	

Introduction

 The senior engineering class of York College of Pennsylvania is proud to present YCP30 for the

2012 Intelligent Ground Vehicle Competition. This vehicle was designed as a capstone project by

computer, electrical, and mechanical engineering students beginning in May of 2011. The 2011 vehicle

from York College of Pennsylvania qualified for the competition for the first time in school history. In

design for the 2012 vehicle, the team chose to keep many aspects of the vehicle similar to last year’s

design. The new features of our robot are tread design, the power system, navigation algorithm, and

added sensor filtering. With the new adjustments to the system, the vehicle is expected to perform

successfully at the 2012 competition.

Team Organization

 YCP30 was designed by senior undergraduate engineering students entering their sixth semester

of classes. The work done by the team was split into three main sub-teams. These teams are: structure

and motion, object detection and localization, and navigation and system architecture. The structure and

motion team was responsible for designing the body, frame, and ground contact for the vehicle. It was

also responsible for the electrical and drive systems. The object detection and localization team is

responsible for the sensors on the vehicle and mapping the data received by those sensors. Their

integration with the navigation algorithm is essential to the functionality of YCP30. The navigation and

system architecture team is responsible for the decision making of the vehicle. This sub-team uses the

sensor input to determine a heading and velocity for the trajectory of the vehicle. Figure 1 below shows

the engineering disciplines involved with each sub-team.

Table 1 – Team Organization

Design Innovations

 In designing YCP30, many features are similar to the design of last year’s vehicle. There are

however a few areas that have been focused on and are important in allowing our robot to perform

successfully this year.

1. New tread design for ease in turning and added static friction

2. Weight reduction for quicker turning and responsiveness to commands

3. New onboard computer

Vision,	 Object	 Detection,	 and	 Localization Decision	 Making	 and	 System	 Architecture	 Team Structure	 and	 Motion	 Team

Tim	 Cardenuto	 (EE) Kevin	 Gaquin	 (CE) Matthew	 Small	 (EE)
Patrick	 McVeigh	 (EE) Andrew	 Malachowski	 (CE) Matthew	 Heisey	 (ME)
Richard	 Beasley	 (CE) Fernando	 Torres	 (ME)

Ethan	 Benedict	 (ME)
John	 Powell	 (EE)

Faculty	 Advisors
Dr.	 Gregory	 Link	 and	 Dr.	 Patrick	 Martin

Project	 Team	 Leader
John	 Powell	 (EE)

3	
	

4. Dual webcams for increased viewing angle

To improve the vehicle’s maneuverability the treads were to be redesigned to have a higher

coefficient of friction, add grip to the treads to prevent them from slipping, and turn better on uneven

terrain. The first test performed was a friction test to find the static and kinetic coefficients of friction of

last year’s robot and the potential new treads. Two new treads were designed and tested comparing the

values to the treads from last year.

One of the major mechanical differences from last year’s vehicle to this one is in weight reduction.

The robot last year weighed roughly 200 pounds. This weight came from a robustly designed frame and

oversized batteries. This year, our team has made it a goal to build a robot that weighs less than 160

pounds. The reduction in weight will help with quicker turning and responsiveness to commands. With

lower weight, the motors will have to work less to move the vehicle. The less the motors have to work,

the less power is used.

The vehicle this year has an onboard desktop computer. This feature is powered by an onboard

lithium polymer battery. From our calculations, this lithium polymer will allow the computer to run for

one hour before dying. In order to charge this battery fully, the battery must be charging for roughly three

hours. While the vehicle will only be on the course for ten minutes at a time, the computer will be

running for long periods of time for debugging purposes. The computer cannot be powered all day by the

lithium polymer battery. An umbilical system was designed in order to allow for switching to an AC/DC

converter during debugging. This umbilical allows for the power of the lithium polymer to be conserved

while not shutting the computer down.

Last year, the vehicle was implemented with one camera mounted at the top of the vehicle. This year,

the team has implemented two cameras mounted on wings at the top of the camera tower. This will allow

for increased viewing angle and ability to see the edges of the robot. Seeing the edges of the robot will

allow the vehicle to see obstacles that are close to it and avoid them.

Design Specifications and Vehicle Performance Goals

Physically, the vehicle this year is designed to be at minimum dimensions as specified by the

competition. The design was intended to make navigation easier as well as reduce weight. The sizing

leads to lower power consumption and faster vehicle response time. The vehicle mechanical

specifications are listed in table 2 below. The performance of the vehicle also has team set specifications.

These specifications are based on sensor performance as well as power restrictions. The specifications

are listed in table 3 below.

4	
	

Table 2 – Physical Characteristics

Table 3 – Performance Statistics

Vision System

Seen below in figures 1 and 2, is the viewing angle of the cameras on the vehicle. After

observing numerous other teams’ line tracking failures last year due to close proximity lines running

parallel to the vehicle’s direction of travel, as well as observing this failure mode in our own tests, we

decided to adjust our vision system to utilize a two camera setup. This setup has cameras mounted

perpendicular to the tracks on either side of the robot. The cameras are placed 30" from the front of the

robot at a height of 54". This allows for detecting lines parallel to the tracks that could pose a hazard

while turning. It was determined that the robot should be able to both view a line and react to it turning at

full speed no farther than 1 ft. away. If the robot was turning and approaching a line it should turn no

farther than 6 in before halting the turn. The turning speed of the robot is calculated based on a latency of

250ms from the time the image is first captured until the motors begin to physically respond to the

detection. Using these numbers the robot can turn no faster than 24” a second. This gives an angular

velocity of 14.56 degrees per second.

Figure 1 - Side view of the robot plane of view; Figure 2. Viewable area of Robot from top

Weight 167	 pounds	 including	 20	 pound	 payload
Width	 25.5	 inches
Length 36.5	 inches
Height 50.5	 inches

Maximum	 Speed 10	 miles	 per	 hour
System	 Response	 Time 115ms
Battery	 Life One	 hour	 run	 time
Obstacle	 Detection	 Range 10	 feet
Accuracy	 of	 GPS	 Waypoints 1	 meter

5	
	

 Image processing is performed via EMGU open CV wrapper for c#. Once an image is captured, it

is necessary to convert said image into a useful data set consisting of distances in a three dimensional

plane. This conversion is done by utilizing a pre-calculated array that contains the actual distances, in

inches, of every pixel the camera captures. This array is generated using the homography, perspective

transform, and chessboard detection features available in open cv. Pre-calculating our transform array is a

performance improvement over the built-in transforms functions, which require re-computation each pass.

The chessboard is placed within the field of view of the camera. The distance of the board, along with its

physical dimensions, are entered into the calibration program and world space points are generated and

saved into a file.

 Once the robots line detection algorithm captures an image, it is converted into hue, lightness, and

HLS format. The lightness values are checked against a predetermined threshold value; any pixels within

this range are saved into an array of camera detection objects and sent to the world map for path planning.

Object Detection

The SICK LMS111-10100 LIDAR was used for object detection by returning object distance and

angle from the robot heading. The LIDAR takes measurements every .5° over a 270° spread returning 541

detections each time data is queried. These detections are grouped into objects based on inter-detection

distances to reduce the number of points stored in mapping. The absolute x and y position of each object

is then calculated based on the offset from the absolute robot position at the time of measurement. Finally,

occlusion is performed on camera objects that are determined to be artifacts of LIDAR detected objects.

The LIDAR and camera objects are then combined in a world map used by navigation.

System Architecture

	 Operating the vehicle requires the integration of the sensing network with the navigation and

image processing algorithms. In order to facilitate integration the task parallel library (TPL) introduced in

.NET 4.5 was used to create a custom architecture similar to ROS. Each block found in figure 3 found

below represents an actor within the system. The sensing network consist of a Phidget 1055 Spatial, two

US Digital E6 encoders, a Hemisphere A100, a Sick LMS111 LIDAR, and two Logitech C310 webcams

producing data at 24 ms, 115 ms,50 ms, 20 ms, and 125 ms periods respectively. The Phidget and

encoders pass data to a spatial filter to determine the vehicle’s spatial location, while the webcam and

LIDAR data are passed asynchronously to their respective filtering blocks. The filtered data is then

transformed into to match the vehicles current orientation and combined into a construct aptly called a

Scene Graph which the navigation algorithm utilizes for obstacle and line avoidance, ultimately passing

commands to the motor controller.

6	
	

Camera
0

LIDAR

Spatial
Filtering

Image
Filtering

Motor
Encoder

GPS

IMU

Navigation

LIDAR
Filtering

Spatial
Transformation

1

2

3

7 12

9

11

10

4

Camera
1

6

8

5

Motor
Controller13

	
Figure	 3	 –	 System	 Architecture	

Navigation & Mapping

 After competing last year with a robot which implemented the A* algorithm, this year our team

wanted an algorithm which could performs as well as A* however, takes a safer path, rather than a shorter

one. After researching various algorithms, our team decided that utilizing a Potential Fields Algorithm,

could give us a safer path which was more likely to not hug lines, as A* did. However, since the

Potential Fields Algorithm is now being implemented, a Cartesian based map no longer efficiently fulfills

the mapping task.

 The reason a Cartesian based map no longer solves the task of mapping efficiently, is the

Potential Field Algorithm only needs to know how far an object is away and the angle to the object. So

while a Cartesian based map could be used, since it is no longer necessary to have each node of the map

represented, as is needed with an A* algorithm, it is only necessary to store each object's location.

Therefore, a simple list can be implemented which contains the necessary data. In this list, which we call

a Scene Graph, there are actually three different sub-lists, as well as the robot's location. Each of the

three sub-lists all contain similar data, the coordinate of the object based upon the initial robot's

coordinates, the time when the object was found, how long the object has to live, and the other fields

shown below in which are necessary for the Potential Fields Algorithm. Within the mapping a Scene

Graph exists that contains data which is still important to the robot. As the data in the Scene Graph

7	
	

becomes old and has existed for longer than its time to die allows, it is then removed. Note if an object in

the current Scene Graph was detected again, its time detected gets updated so that it will not be removed

and placed in the dead Scene Graph.

 To navigate based upon this Scene Graph, the Potential Fields Algorithm will be used [1]. The

Potential Fields Algorithm works based off of two simple equations seen below in Equation 1 and 2.

These Equations result in a ∆! and ∆!, which can then be used to generate an new vector, rather than a

path. The variables associated with the following equations are as follows: β = constant > 0, α =

constant > 0, d = distance from robot to goal, r = radius of the goal, s = spread of the goal,

 θ = angle of robot heading to goal.

Attractor

Δ!!"" =
0, ! < !

! ! − ! cos θ , r ≤ d ≤ s + r
!" cos(!) , ! > ! + !

 ∆!!"" =
0, ! < !

! ! − ! sin θ , r ≤ d ≤ s + r
!" sin(!) , ! > ! + !

Equation 1 - Equation for an attractor in the Potential Fields Algorithm

Repulsor

∆!!"# =
−!"#$ cos ! ∞, ! < !

−! ! + ! − ! cos ! , ! ≤ d ≤ s + r
0, ! > ! + !

 ∆!!"# =
−!"#$ sin ! ∞, ! < !

−! ! + ! − ! sin ! , ! ≤ d ≤ s + r
0, ! > ! + !

Equation 2 - Equation for a repulsor in the Potential Fields Algorithm

 By combining the two vectors a single vector can be created which will "pull" the robot to the

GPS waypoint along the safest path, from the current robot's location. Figure 4 shows the results of two

equations and their effects, both on each other and on their environment.

	
Figure 4 - Graphical representation of a Goal and obstacle in a single map.

8	
	

(Top left) An attractor (GPS Waypoint) placed in the bottom left corner. (Top right) A repulsor

(obstacle) placed in the center. (Bottom Left) The combination of the goal an obstacle in a single map.

(Bottom right) A graphical representation of the valley created by the GPS waypoint, and the hill created

by the obstacle.

To then utilize this algorithm with multiple obstacles, all that is necessary is to perform the summation on

all the obstacle's resulting repulsion vectors. When repeated as the robot moves, it results produce a

smooth, safe, path, an example of this can be seen in Figure 5. This simulation was performed utilizing

an engine we designed and built in C# to allow for testing of any scenarios which may present themselves

at the competition.

Figure 5: Test Course utilizing the Potential Fields Algorithm.

However, by using the Potential Fields Algorithm, situations can exist in which the vector

generated has magnitude of zero, i.e. the robot is stuck in a local minima. Therefore, to solve this issue a

different path planning algorithm must be used to get out of the minima generated. After researching

various algorithms, the conclusion was made to utilize an algorithm similar to A*. But A* is based upon

Graph Theory which requires vertices and edges, which while they exist in a Cartesian map, they do not

exist within a Scene Graph. Therefore an adaption on A* was created; this adaption, which we have

called G*, relies on creating the vertices and edges is needed. A vertex is created by expanding out from

a previous vertex the move distance, the desired distance between any two adjacent vertices. The edge is

created by utilizing the distance-plus-cost heuristic generated when a new vertex is created. The distance-

plus-cost is based upon the number of obstacles within the given vertex, and if it is a turn or not. Other

than the generation of vertices and edges, G* runs exactly as A* would. It still returns path, that path is

then used on top of the Potential Fields Algorithm. To do this the first vertex outside of the robot's width

is added to the Scene Graph as an attractor, then the Potential Fields algorithm runs normally. However,

9	
	

utilizing the G* vertex rather than and GPS waypoint as its attractor. This same process is then repeated

each time the navigation algorithm is called, while a shortest path algorithm is still being utilized the

resulting path resembles that of a safer path rather than the shortest path.

Waypoint Navigation

An A100 Smart Antenna GPS is utilized to track the robots position in latitude and longitude

coordinates. This sensors measurements are necessary to calculate the great circle distance from the robot

to the given competition GPS waypoints, which is performed using the Haversine formula where is the

goal waypoint and is the current robot location.

The GPS is also used to assist the encoders with calculating changes in x, y position by using the

same formula. This GPS has an accuracy of within .6 meters at a 95% confidence which will ensure the

robot can navigate to within 1 meter of waypoints.

Position Estimation

This year, the 2012 team has worked to implement a Kalman Filter estimation algorithm. This

version was used over the original Kalman Filter due to the non-linear nature of robotic movement. The

measurement data passed to the filter is the position coordinates as measured by the sensors. A Kalman

gain is then calculated based on the variances of the measurements and process. The innovation is then

estimated using the weighted difference between the measurement and the previously predicted state. This

innovation is added to the predicted state to get the current state.

Finally the next state and process variance is calculated using the navigation input and the

jacobians of the odometry model. The EKF process described as three steps of Measure, Estimate,

and Predict are looped and will maintain an accurate estimate of the current state based on control

input and encoder data.

Electrical System

Computer Power

In the design of the electrical system, the powering of the computer was the first step. In year’s past, the

team has used an on board laptop as the decision making center of the vehicle. This year, the team

determined that designing an on board desktop would be best for computational speed. In order to power

this portion of the system, a 25.9V, 12.6Ah lithium polymer battery was selected. It is designed to be

able to sustain power to the computer and sensors for up to an hour. The batteries for the motor system

are rate at 2-12V, 20Ah. These batteries are also estimated to deliver a run time of an hour.

Umbilical Design

The computer will be run all day when at the competition. As a result, the computer battery will die quite

quickly if another source of power is not provided. In order to allow for full computer operation while the

lithium polymer battery charges, an umbilical power supply was designed. The umbilical consists of an

10	
	

AC/DC power converter that is plugged in to the computer to power it. It is not convenient however to

disconnect the lithium polymer battery and connect the alternate power source as this would require

shutting down and restarting the onboard computer, disrupting work and reducing the rate at which testing

and improvements can be made. In order to make this switch without any disconnections or power shut

down, a procedure has been put in place to help ease the situation. While the computer is running, the

operator may plug in the alternative power supply. At this moment, the lithium polymer and the AC/DC

power supply are both powering the computer. In order to do this safely, there is diode protection on both

power supplies. Without this diode protection, the power source with the higher voltage would attempt to

charge the other power source. The diodes prevent this issue. Once both power sources are connected, a

switch may be flipped to disconnect the lithium polymer from the computer. Power is not lost to the

computer and now the battery may be charged. After the switch is used, the battery is now connected to

an outlet on the vehicle where the charger can be attached. This umbilical is shown below in figure 6.

D1

D1

D1

D1

AC/DC	
Rectifier

LiPo 25.9	 VDC

24	 VDC

Ch
ar
gin

g	 L
ine

Di
sc
ha
rg
ing

	 Li
ne

(+)
To	 LiPo	 Charger

(-‐)

SW3

LiPo	 Discharge	 Indicator	
LED

Power	 to	 the	
Computer
24-‐30VDC

AC

	
Figure	 6	 –	 Umbilical	 Design	

11	
	

Opus	 Solutions	
DCX6	 Power	

Supply

24	 VDC	 –	 30	 VDC	
From	 Umbilical
Or	 LiPo	 Battery

SW1

Motherboard

SICK	 LMS111	
LIDAR

Hemisphere	
A100	 GPS

F1 F2

12	 VDC

Roboteq	
HDC2450	
Motor	

Controller

Motor	 1

SLA1

SLA2

F4

F5

F7

12	 VDC

12	 VDC

Seco-‐Larm	
SK910-‐R2	
Receiver

Wireless	 Signal	 for	
E-‐stop

F6

Mechanical	
Pushbutton	 E-‐

Stop
BT1

Motor	 2

SLA	 Discharge	
Indicator	 LED

(+)
To	 	 SLA	
Charger

(-‐)

SW2

D1

S

L

L

5	 VDC

S
1	 kΩ	

L

1	 kΩ	

RL2

Figure 7 - Power System on Vehicle

Mechanical Design

Camera Tower

The camera tower had to be redesigned this year in order to properly support the two cameras that

our robot design requires. A framework of aluminum members had given previous IGVC team’s great

success in maximizing rigidity while minimizing weight, and so the idea was reused for this year. The

resonant frequency for the camera tower was discovered during analysis, and resonance was determined

to occur outside the operating range of the robot.

Figure 8: Deflection at the first resonant frequency of the tower (ωn = 54.573 Hz)

12	
	

Tread Design:

This year, the team decided that it is necessary to redesign the treads on the vehicle. This desire

came in an effort to minimize slip and help ease turning. In order to print these treads, a 3D printer was

used to print ABS plastic. Two new designs were printed using this styrene ABS plastic. With these two

designs, analysis was done to see which choice was best for the vehicle. The two designs used were a gap

tread design and a v tread design. These new designs were analyzed for strength and coefficients of

friction. The static coefficient of friction of the “V” tread design was too close to 1.0; therefore motors

will require more power to start moving and turning. Also as a result, it will be harder to maneuver, which

affects the vehicles performance. The gap tread design had a lower coefficient of friction than the v tread.

It did however have a higher coefficient of friction than last year’s treads which will allow for better

maneuvering and less slip. Also in an effort to increase maneuverability, this year wings were added on

the side of the treads. This was done so that the robot can avoid getting stuck in gaps on holes in the

ground while performing turns.

The 3D printer used to print these treads has the ability to print ABS plastic in layers, making it

possible to print specimens in different directions at different strengths. A material test was performed to

determine what direction was the strongest under tension. The material test was performed using dog

bones printed in four different directions. The weakest ultimate stress occurs when the direction used is

standing vertical (1860 psi), from the FEA the maximum stress is 1530 psi, validating ABS plastic as the

material to be used. A tear out shear stress test was also performed to validate the treads.

Figure 9: New tread design (top) and old tread design (bottom)

Tread design Static coefficient of Friction Kinetic coefficient of Friction

Gap tread (new design) 0.84 0.65

V tread (new design) 0.95 0.71

Rexnord tread (old tread) 0.55 0.5

Table 4 – Friction coefficients of different tread designs

A new pin was designed in order to ease stress concentration in the treads. The new pin design

consisted of a 1/8 inch steel rod that is not press fitted into the treads. The pins are secured by two e-clips

13	
	

to prevent them from sliding out. The new design reduces shear stress by 47% (from 687 psi to 365 psi) at

the point of interest where the pin is attached, the section that is most likely to break. The following

figures show the finite element analysis performed to treads.

Figure 10: Finite element analysis of gap tread design (left) and old tread design (right)

Frame Analysis

Due to the overdesign of last year’s frame, the 2012 Structure and Motion Sub-team decided that

a material and cross-section size analysis was needed to confirm the best material for the 2012 robot

frame. In order to analyze various materials, a unit needed to be established that would be able to sort

through all the options. This unit would include the properties wanted on the numerator and the

properties that where unwanted on denominator.

When designing a frame, flexural rigidity is the key aspect. Flexural rigidity is how rigid the

structure is; therefore, it is critical in designing a frame. In order for the suspension to be more effective,

a frame must be rigid. Flexural rigidity is given by EI, where E is the Modulus of Elasticity and I is the

moment of inertia. Various materials were analyzed for the frame and were narrowed down using this

unit. Table 1 shows the materials that were selected to be analyzed.

14	
	

Table 5 – Materials selected to be analyzed for frame use

6061- T6 aluminum was determined to be the best material to use for the frame. Finite Element

Analysis (FEA) was used to verify that both that this material would be strong enough for the frame. The

tread beam was loaded with 1/6 of the robots total weight distributed at the point where the three

crossbeams would be attached. Figure 2 shows the FEA performed on the tread beam, the maximum

stress seen was 1220 psi.

Figure 11: FEA of treadbeam

The design shown in Figure 1 was decided upon for various reasons. First, it satisfies the

constraint that the Lidar needs to be placed so that it can see the back corners of the robot. Additionally,

the design keeps the motors away from the CPU enclosure; therefore, motor noise is not an issue for the

CPU. Also, the robots center of mass is only .08 in. from the geometric center towards the front of the

robot, allowing the suspension to function as designed. Furthermore, the robots center of gravity is

approximately 8.5 in. from the ground. This is an improvement of approximately 1.5 in. from last year’s

design. The weight of this design turned out to be 150lbs; however, while there are holes that show

15	
	

where bolts need to be added, the bolts themselves are not added. These bolts will add weight which will

take the robot slightly over the 150lbs design limit.

Budget for YCP30

 To keep the cost of our project down, several components used on this year’s vehicle have been

recycled from the vehicle entered last year. The LIDAR, GPS, motors and encoders were reused from

last year to this one.

Table 6 – budget for 2012 Vehicle

 The	 ten	 students	 on	 the	 design	 team	 for	 YCP30	 have	 spent	 two	 semesters	 working	 on	 designing,	

manufacturing,	 assembling,	 and	 testing	 the	 vehicle.	 	 Each	 student	 has	 spent	 more	 than	 500	 hours	 on	 this	

project.	 	 These	 500	 hours	 include	 everything	 from	 researching	 part	 availabilities	 and	 prices,	 spending	

time	 in	 team	 meetings,	 and	 constructing	 the	 robot.	 	 In	 total,	 the	 project	 has	 been	 worked	 on	 for	 over	

5000	 hours.	 	 	

References
[1] M. Goodrich, "Potential Fields Tutorial", Brigham Young University, Computer Science.

Item Price Quantity Total
Suspension 143.24$	 	 	 	 	 1 $143.24
Frame 171.28$	 	 	 	 	 1 $171.28
Camera	 Tower 71.29$	 	 	 	 	 	 	 1 $71.29
Camera	 Mounts 96.00$	 	 	 	 	 	 	 1 $96.00
Treads 1,100.00$	 1 $1,100.00
LIDAR 5,000.00$	 1 $5,000.00
GPS 2,000.00$	 1 $2,000.00
Webcams 35.00$	 	 	 	 	 	 	 2 $70.00
Batteries/	 Chargers 531.85$	 	 	 	 	 1 $531.85
AC/DC	 Converter 290.16$	 	 	 	 	 1 $290.16
Electrical	 Components 288.00$	 	 	 	 	 1 $288.00
Motors 85.00$	 	 	 	 	 	 	 2 $170.00
Encoders 85.10$	 	 	 	 	 	 	 2 $170.20
Computer 1,045.94$	 1 $1,045.94
Motor	 Controller 675.00$	 	 	 	 	 1 $675.00

Total $11,822.96

